

Development of an autonomous profiling Carbon Glider Claudine Hauri¹, Brita Irving², Andrew McDonnell², Hank Statscewich², Peter Winsor²

Motivation

New autonomous observational capabilities are needed because traditional ship based observations are operationally expensive and unable to provide the type of spatial and temporal coverage of seawater CO₂ measurements required for an improved conceptual understanding and quantitative assessment of the carbon cycle in the rapidly changing Arctic Ocean.

Carbon Glider Configuration

¹International Arctic Research Center and ²Institute of Marine Science, University of Alaska Fairbanks

Profiling Slocum Glider by Teledyne Webb

The vertical gradient in pCO₂ is established primarily by the photosynthetic drawdown of carbon dioxide and the dilution through freshwater at the surface.

• Response time of sensor introduces 67 second hysteresis when operated in continuous mode

Carbon Glider Profiles from a Hover Mission in Resurrection Bay in August

Technicalities of a Hover Mission • Dynamical adjustment of battery position is used to

- maintain a level pitch
- desired depth

At the 15 and 20 m hover depths, the glider was essentially neutrally buoyant and required very little buoyancy adjustments. At other depths, significant buoyancy adjustments were required to reach the desired depths.

First Autonomous glider based profiles of pCO,

Key to success: • Integrated custom pCO₂ sensor: fast response time, small in size, low power demand Hover mission capability

• Dynamical buoancy adjustments bring the glider to the