Radiation in the Environment

L. Griffeth1, A. Orr1, W. Splain1, J. Kelley1, D. Dauber2, S. Read2, and D. Barnes1
(1) University of Alaska Fairbanks, Fairbanks, Alaska 99775,
(2) Department of Environmental Conservation, Fairbanks, Alaska.

Radiation is the transmission of energy in the form of light, or radiant heat from a body as it undergoes internal changes. Radiation comes in many forms that fall into two categories, ionizing radiation and non-ionizing radiation.

Types of Radiation:

Ionizing Radiation is a particle or wave high enough in energy to eject a charged particle from an atom, in a process called ionization. There are many forms of ionizing radiation with varying levels of energy and penetration potential (Fig.1). The most common are alpha particles, beta particles, gamma rays, and x-rays.

- Alpha particles are helium nuclei. These are highly ionizing particles that are emitted from the nucleus during the decaying process of some radioactive elements. They are not very penetrating and are usually stopped as little as a dead layer of skin. Nevertheless, if ingested or inhaled, alpha particles can be very damaging, even deadly.
- Beta particles are highly ionizing electrons, which are emitted from the nucleus of some radioactive elements during the decaying process. These are more penetrating than the alpha particles and can usually be stopped by a layer of clothing. However, if ingested or inhaled, they can be very damaging and deadly.
- Gamma rays are high energy waves in the electromagnetic spectrum with no charge or mass. Along with beta and alpha particles, they are emitted from the nucleus of some elements undergoing a decaying process. Gamma rays are highly penetrating and are only stopped by several feet of concrete or lead, making gamma rays potentially more harmful than the previous forms of ionizing radiation.

Non-Ionizing Radiation includes forms of radiation such as ultraviolet light, visible light, infrared, microwaves, and radio waves. The focus of this paper will be on ionizing radiation.

Sources of Radiation

Although radiation is present everywhere and in everything, not all radiation is normal for a given area. Normal radiation or background radiation is defined as the dose of radiation an individual is subjected to in their daily environment, whether man-made or naturally occurring. Sources for background radiation are dependent on factors such as elevation, proximity to radiation emitting facilities, and geologic makeup of area.

Non-background radiation is anything above the “normal radiation” in a given area. Examples are smoking, cancer treatments, x-rays, and traveling in an aircraft (due to increase in elevation).

Fallout from a nuclear explosion is considered non-background radiation. Since some of the radioactive material from nuclear fallout has a relatively short half-life, over time it becomes a part of background radiation within a given environment.

Radiation in Alaska has existed and fluctuated since the earth first formed billions of years ago. The sources that have contributed to this pool of radiation are both natural and man-made.

- Radon-222 is a naturally occurring gas. It is a type of radioactive element that is produced as Uranium (an unstable element) undergoes a decaying process to a more stable element. These types of elements are abundant in areas containing granitic rock. Areas in Alaska where this occurs are: •Seward Peninsula •Eagle Creek (Death Valley) •Purcell Mountain

A harbor near Point Hope was to be constructed using nuclear explosives. Although the idea was dismissed, a hydrological study was conducted shortly thereafter (1963). The study involved the spreading of small amounts of radioactive tracer material (Cesium-137, 1.11 x 108 Bq), which was to be removed immediately after the study. Instead, the material was left at location and buried. In 1993, the frozen earth containing remnants of the tracer material was removed upon its discovery and disposed of properly.

Three underground nuclear tests (in Table below) were conducted on Amchitka Island.

<table>
<thead>
<tr>
<th>Project</th>
<th>Year</th>
<th>Keel Yrd</th>
<th>Depth (m)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismic Testing</td>
<td>1965</td>
<td>800t</td>
<td>715</td>
<td>Seismic Testing</td>
</tr>
<tr>
<td>Mellow</td>
<td>1969</td>
<td>1 Mt</td>
<td>1220</td>
<td>Seismic Calibration</td>
</tr>
<tr>
<td>Coulson</td>
<td>1971</td>
<td>5 Mt</td>
<td>1790</td>
<td>Device Testing</td>
</tr>
</tbody>
</table>

A nuclear power plant was constructed (1963) and operated at Fort Greely until 1971. The majority of the material and parts were removed and disposed of, while the rest was buried on site and encased in concrete until 1997 when a leakage was detected. Cleanup and decommissioning of the nuclear power plant (1997) is currently being conducted by the U.S. Army.

Chibibino, in the Russian far east, is the closest nuclear reactor to Alaska, making it a potential threat. As with many of Russia’s nuclear power plants, the reactor is not a light water reactor. Should this plant suffer the same fate as Chernobyl, a radioactive cloud could pass over Alaska with potential for accumulation in the environment and subsistence food supply.

What can we do about radiation? Radiation is everywhere. As a community we must educate ourselves so we can make the right choices regarding risk. To do this we should:

Know the sources, doses, and types of radiation in our surroundings.
Know how to protect ourselves adequately from unnecessary radiation by monitoring the background radiation levels. This can be accomplished by:
- Operating small monitoring devices which can be purchased to monitor radon levels.
- Maintaining long-term monitoring sites at the community level (Fig.5).
- Establishing a baseline level for gamma radiation to alert the community about sudden increases in radiation should it occur.

If exposure is unavoidable, individuals must:
- Use appropriate protection.
- Distance themselves from source.
- Limit time of exposure to source.

References:

Acknowledgements: This project is a collaborative effort between the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers, and the University of Alaska Fairbanks (UAF). We thank the USGS Geology Survey and the UAF Geology Department for their support. We appreciate the support of theuid chapter of American Indian Science and Engineering Society (AISES).

Fig.1 | A visual comparison of the penetration potential of different forms of ionizing radiation. Source: http://www.uic.com.au/

Fig.3 | Radiation Source Distribution. Other category includes source types such as nuclear power, fallout, and food packaging.

Fig.5 | NEWNET (Neighborhood Environmental Watch Network), uses these towers to gather radiation and meteorological data. This tower is located in Barrow.

There are many different units used to measure radiation. However, the internationally preferred units are the International System of Units (SI).

- The Gray (Gy) is used as a measurement of how much radiation is absorbed by a body:
 1 Gray = 1 Joule per kg of material

- The Sievert (Sv) is used as a measurement of not only the amount of radiation that is absorbed by a given body but also takes into account quality (Q) of the radiation that is absorbed. For example, exposure to 1 Sievert of alpha radiation is more damaging than exposure to 1 Sievert of beta radiation in any given amount of time. Highly damaging radiation has a high value for Q.
 1 Sievert = 1 Gray * Q

- The Becquerel (Bq) is used to measure radioactivity or the decaying of radioactive material.
 1 Becquerel = 1 disintegration per second

- Disintegration is the transformation of an element undergone. For example, Uranium-238 decays to Thorium-234 through alpha emission.

- Common Unit Prefixes
 - Unit Conversions
Common Unit Prefixes	Symbol	SI Prefix
m (Milli)	10^-3	
μ (Micro)	10^-6	
n (Nano)	10^-9	
p (Pico)	10^-12	
f (Femto)	10^-15	
a (Atto)	10^-18	

- Source Type
 - Natural Sources
Source Type	Annual Dose (Bq)
Adult Human	7.0 x 10^6
1 kg Coffee	1.0 x 10^6
1 kg Nuts	5.1 x 10^6
1 kg Bananas	2.2 x 10^6
1 kg Uranium	1.0 x 10^6
1 kg Granite	2.0 x 10^6
1 kg Radioisotope for Medical Diagnoses	2.0 x 10^6
1 kg Radioisotope for Medical Therapy	1.0 x 10^6
1 kg Smoke	3.0 x 10^6

- Sources: 106 mega (M)
- Common Unit Prefixes: 10^-6 micro (μ)
- Source: http://www.neri.org (2001)
- “Indicates one of several types of radioactive elements used for medical purposes.”
- “Indicates one of several types of radioactive elements used for medical purposes.”
- *Radiation Absorbed Dose

As shown, common radioactive elements such as potassium-40 are abundant not only within the body but also in the surrounding environment. Source: Source: U.S. Army, 2000

*Indicates one of several types of radioactive elements used for medical purposes.

Fig.2 | Right: Various Sources of Radiation. As shown, common radioactive elements such as potassium-40 are abundant not only within the body but also in the surrounding environment. Source: U.S. Army, 2000

*Indicates one of several types of radioactive elements used for medical purposes.

[5] NEWNET (Neighborhood Environmental Watch Network), uses these towers to gather radiation and meteorological data. This tower is located in Barrow.